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1 Random variables over uncountably infinite probability spaces

To define a random variable, we need to define a σ-algebra on the range of the random
variable. A random variables is then defined as a measurable function from the probability
space to the range: functions where the pre-image of every subset in the range σ-algebra
is an event in F .

An important case is when the range is [0, 1] or R. In this case we say that we have a
real-valued random variable, and we use the Borel σ-algebra unless otherwise noted. For
countable probability spaces, we wrote the expectation of a real-valued random variable as
a sum. For uncountable spaces, the expectation is an integral with respect to the measure.

E [X] =
∫

Ω
X(ω)dν .

The definition of the integral with respect to a measure requires some amount of care,
though we will not be able to discuss this in much detail. Let ν be any probability measure
over the space R equipped with the Borel σ-algebra. Define the function F as

F(x) := ν((−∞, x]) ,

which is well defined since the interval (−∞, x] is in the Borel σ-algebra. This can be used
to define a random variable X such that P [X ≤ x] = F(x). The function F is known as the
distribution function or the cummulative density function of X.

When the function F has the form

F(x) =
∫ x

−∞
f (z)dz ,

then f is called the density function of the random variable X. In this case, one typically
refers to X as a “continuous” random variable. To calculate the above expectation for
continuous random variables, we can use usual (Lebesgue) integration:

E [X] =
∫

R
x f (x)dx .
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(The notion of density can be extended to between any two measures, via the Radon-
Nikodym theorem. In that context, the density f of a continuous random variable is
referred to as the Radon-Nikodym derivative with respect to the Lebesgue measure. In
the earlier example with the measure concentrated on the finite set T, the probability of
each point is the Radon-Nikodym derivative with respect to the counting measure of T:
νT = ∑t∈T δt.)

2 Gaussian Random Variables

A Gaussian random variable X is defined through the density function

γ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ is its mean and σ2 is its variance, and we write X ∼ N (µ, σ2). To see the definition
gives a valid probability distribution, we need to show

∫ ∞
−∞ γ(x)dx = 1. It suffices to show

for the case that µ = 0 and σ2 = 1. First we show the integral is bounded.

Claim 2.1 I =
∫ ∞
−∞ e−x2/2dx is bounded.

Proof: We see that

I =
∫ ∞

−∞
e−x2/2dx = 2

∫ ∞

0
e−x2/2dx ≤ 2

∫ 2

0
1dx + 2

∫ ∞

2
e−xdx = 4 + 2e−2 ,

where we use the fact that I is even and after x = 2, e−x2/2 is upper bounded by e−x.

Next we show that the normalization factor is
√

2π.

Claim 2.2 I2 = 2π.

Proof:

I2 =
∫ ∞

−∞
e−x2/2dx

∫ ∞

−∞
e−y2/2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy

=
∫ ∞

0

∫ 2π

0
e−r2/2rdrdθ (let x = r cos θ and y = r sin θ)

= 2π
∫ ∞

0
e−sds (let s = r2/2)

= 2π .
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This completes the proof that the definition gives a valid probability distribution. We prove
a useful lemma for later use.

Lemma 2.3 For X ∼ N (0, 1) and λ ∈ (0, 1/2),

E
[
eλ·X2

]
=

1√
1 − 2λ

.

Proof:

E
[
eλ·X2

]
=

∫ ∞

−∞
eλ·x2 1√

2π
e−x2/2dx =

∫ ∞

−∞

1√
2π

e−(1−2λ)x2/2dx

=
∫ ∞

−∞

1√
2π

e−y2/2 dy√
1 − 2λ

(let y =
√

1 − 2λx)

=
1√

1 − 2λ
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