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1 Chernoff/Hoeffding Bounds

Let’s recall the bounds we proved in the previous lecture for sums of independent Bernoulli
random variables.

Theorem 1.1 Let X1, ..., Xn, be n independent Bernoulli random variables, where Xi takes value
1 with probability pi. Let Z = ∑n

i=1 Xi and let µ = E [Z] = ∑n
i=1 pi. Then, we have for any δ > 0,

P [Z ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

P [Z ≤ (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ

.

Moreover, when δ ∈ (0, 1) both the above expressions can be bounded by e−δ2µ/3.

1.1 Coin tosses once more

We will now compare the above bound with what we can get from Chebyshev’s inequality.
Let’s assume that X1, ..., Xn are independent coin tosses, with P [Xi = 1] = 1

2 . We want to
get a bound on the value of Z = ∑n

i=1 Xi. Using Chebyshev’s inequality, we get that

P [|Z − µ| ≥ δµ] ≤ Var [Z]
δ2µ2 .

And since in this particular case we have that Var [Z] = n/4 and µ = n/2, we get that

P [|Z − µ| ≥ δµ] ≤ 1
δ2n

.

The above bound is only inversely polynomial in n, while the Chernoff-Hoeffding bound
gives

P [|Z − µ| ≥ δµ] ≤ 2 · exp (−δ2n/6) ,

which is exponentially small in n. This fact will prove very useful when taking a union
bound over a large collection of events, each of which may be bounded using a Chernoff-
Hoeffding bound.
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1.2 Union bounds

Consider the case where for m sets S1, . . . , Sm ⊆ [n], we define

ZSi = ∑
j∈Si

Xj .

While the variables ZS1 , . . . , ZSm are not necessarily indepdent, each of these is a sum of
few Xj variables, which are indepdent. Thus, we can say that for any Si,

P

[∣∣∣∣ZSi −
|Si|
2

∣∣∣∣ ≥ t
]

≤ 2 · exp
(
−2t2/(3 |Si|)

)
≤ 2 · exp

(
−2t2/(3n)

)
,

where we choose δ = 2t/ |Si| so that δ |Si| /2 = t. Thus, by a union bound over all i ∈ [m],
we get that

P

[
∃i ∈ [m].

∣∣∣∣ZSi −
|Si|
2

∣∣∣∣ ≥ t
]

≤ 2m · exp
(
−2t2/(3n)

)
.

Thus, when t =
√

3n · ln m, the probability of the above event is at most 2/m. Check
that it just using Chebyshev’s inequality does not allow for such a strong bound on the
probability of the above event.

Note that the above calculation used the following union bound

Exercise 1.2 Let E1, . . . , Ek be events on the same outcome space Ω. Then

P [E1 ∪ · · · ∪ Ek] ≤
k

∑
i=1

P [Ei] .

1.3 Dealing with ±1 random variables

A common variant of the above calculations also arises for the case of random variables
which take values in the set {−1, 1} instead of the set {0, 1}. Let Y1, . . . , Yn be independent
random variables, which take values in the set {−1, 1} with probability 1/2 each (such
random variables are called Rademacher random variables), and let Z = ∑n

i=1 Yi. We
can easily apply the results for Bernoulli random variables to this case by defining Xi =
(1 + Yi)/2. Note that the variables X1, . . . , Xn are now independent Bernoulli random
variables (with parameter 1/2). Considering Z′ = ∑n

i=1 Xi, we can write

Z′ =
n

∑
i=1

Xi =
n

∑
i=1

1 + Yi

2
=

n
2
+

Z
2

.

We can thus analyze deviations from the mean (which is 0) for the variable Z as

P [|Z| ≥ t] = P

[∣∣∣Z′ − n
2

∣∣∣ ≥ t
2

]
,

where we can analyze the latter expression using the bounds developed above.
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2 Balanced Allocations

We consider the following problem of allocating jobs to servers: We are given a set of n
servers 1, . . . , n and m jobs arrive one by one. We seek to assign each job to one of the
servers so that the loads placed on all servers are as balanced as possible.

In developing simple, effective load balancing algorithms, randomization often proves to
be a useful tool. We consider two approaches for this problem:

• Random Choice: one possible way to distribute the jobs is to simply place each job
on a random server, chosen independently of the previous allocations.

• Two Random Choices: For each job, we choose two servers independently and uni-
formly at random and place the job on the server with less load (breaking ties arbi-
trarily).

We will show that using two random choices significantly reduces the maximum load on
any server. For the entire analysis, we will work with the case when m = n. The analysis
easily extends to an arbitrary m, but it easier to appreciate the bounds when m = O(n)
(and in particular when m = n).

It is convenient to think of the above in terms of the so called “balls and bins” model. Each
job can be thought of a s ball and each server is a bin. We think of assigning job j to a server
i as throwing the jth ball in bin i. The load of a server is the same as the number of balls in
the corresponding bin.

2.1 Random choice

Suppose Zi = number of balls in bin i. We can write

Zi = ∑
j

Xij, where Xij =

{
1 if ball j is thrown in bin i
0 otherwise

.

Then, we have that each Zi is a sum of m(= n) independent random variables with E [Zi] =
1. Let t = 3 ln n

ln ln n . By Chernoff/Hoeffding bounds, we have that for each i,

P [Zi ≥ t] ≤
( e

t

)t
.

To bound the maximum load in across all bins, we use a union bound to say that

P [∃i ∈ [n]. Zi ≥ t] ≤
n

∑
i=1

P [Zi ≥ t] ≤ n ·
( e

t

)t
,

which is at most 1
n for the above value of K. Hence, with probability at least 1 − 1

n , the
maximum number of balls in a bin is at most 3 ln n

ln ln n .
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2.2 The power of two random choices

It is a somehwat surprising result (which can still be proved using Chernoff bounds) that
two random choices can reduce the maximum load to O(ln ln n). The proof technique is
due to Azar et al. [ABKU94, ABKU99] and various applications were explored by Mitzen-
macher in his thesis [Mit96]. We will not discuss the proof of this result, but you are en-
couraged to look up the analysis from the notes in 2016 (or from the book by Mitzenmacher
and Upfal).

3 Probability over (uncountably) infinite probability spaces

Extending the idea of defining a probability for each outcome becomes problematic, when
we try to extend it to uncountably infinite spaces. For example, let Ω = [0, 1]. Let ν :
[0, 1] → [0, 1] be a function, which we want to think of as a probability distribution. Define
the set

Sn =

{
x ∈ [0, 1] | ν(x) ≥ 1

n

}
.

Since we want the total probability to add up to 1, we must have |Sn| ≤ n. Also,

Supp(ν) = {x ∈ [0, 1] | ν(x) > 0} ⊆ ∪∞
n=1 Sn .

Since ∪∞
n=1Sn is a countable set, ν(x) > 0 only for countably many points x. Hence, it

is problematic to think of the probability of the outcome x, for each x ∈ [0, 1]. This can
be resolved by only talking of probabilities of events for an allowed set of events obeying
some nice properties. Such a set is known as a σ-algebra or a σ-field.

Definition 3.1 Let 2Ω denote the set of all subsets of Ω. A set F ⊆ 2Ω is called a σ-field (or
σ-algebra) if

1. ∅ ∈ F .

2. A ∈ F ⇒ Ac ∈ F (where Ac = Ω \ A).

3. For a (countable) sequence A1, A2, . . . such that each Ai ∈ F , we have ∪i Ai ∈ F .

We then think of the sets in F as the allowed events. We can now define probabilities as
follows.

Definition 3.2 Given a σ-field F ⊆ 2Ω, a function ν : F → [0, 1] is known as a probability
measure if

1. ν(∅) = 0.

4



2. ν(Ec) = 1 − ν(E) for all E ∈ F .

3. For a (countable) sequence of disjoint sets E1, E2, . . . such that all Ei ∈ F , we have

ν (∪iEi) = ∑
i

ν(Ei) .

Note that the above definition do not say anything about unions of an uncountably infinite
collection of sets. We can of course define probability measures on F = 2Ω and hence
define ν(x) for all x ∈ Ω. However, as we saw above, such measures will only have
ν(x) > 0 countably many x. Consider the following example.

Example 3.3 Let Ω = [0, 1] and F = 2Ω. Let T =
{

0, 1
3 , 2

3 , 1
}

. For each S ∈ F , define

ν(S) =
|S ∩ T|

4
.

In the above example, ν(x) > 0 only for the points in a finite set T, which is very restrictive.
We would like to formalize intuitive notions like the “uniform distribution” on the space
Ω = [0, 1]: a probability measure that satisfies ν([a, b]) = b − a for a, b ∈ [0, 1] or more
generally, for any event E and a circular shift E⊕ x for x ∈ [0, 1], we want ν(E) = ν(E+ x).
It is a non-trivial result that such a probability measure indeed exists. This probability
measure is known as the Lebesgue measure and is defined over a σ-algebra known as the
Borel σ-algebra. The Borel σ-algebra does not contain all subsets of [0, 1] but does contain
all intervals [a, b]. In fact, one can use the axiom of choice to show that we cannot include
all subsets. The reason is that countable unions of very “thin” disjoint sets can reconstruct
a “thick” set.

Proposition 3.4 Let Ω = [0, 1]. A measure satisfying the requirement that ν(E) = ν(E + x) for
all E ∈ F cannot be defined over the σ-algebra F = 2Ω.

Proof: For the sake of contradiction, assume that such a measure exists. Let B be the
set of numbers in [0, 1) with a finite binary expansion, and define the equivalence relation
between points x, y ∈ [0, 1]:

x ∼ y if ∃b ∈ B such that x = y ⊕ b.

Thus x and y are equivalent if we can change only finitely many of the binary expansion
of one, to get the other. Let [x] denote one such equivalence class. Note that since there
are countably many elements in B, [x] is also countable. In particular, [0] = B. Because
an equivalence defines a partition, it follows that there must be uncountably many dis-
tinct [x]’s that are furthermore disjoint. Now, by the axiom of choice, construct a set V
that selects only one element from each such distinct [x]. V thus has uncountably many
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elements, but in some sense, is “thin”. Consider all the circular shifts of V of the form
V ⊕ b for b ∈ B. These are disjoint, since we never recreate the same element within the
equivalence class of a given point x (why?) nor jump from the equivalence class of x to
that of another. Furthermore as b varies, each x recreates its entire equivalence class, and
it follows that: ⋃

b∈B
V ⊕ b = [0, 1].

So now we ask, what can ν(V) be? It certainly cannot be positive, since otherwise ν([0, 1]) =
∑b∈B ν(V ⊕ b) = ∑b ν(V) = ∞. But it cannot be zero either, since otherwise P([0, 1]) =

∑b ν(V) = 0. This is a contradiction.

What went wrong? This is a very involved debate, but essentially the issue is an interac-
tion between countable additivity and our ability to have created V in the first place. The
attitude of probability theory can be interpreted as either denying that such sets exists, or
accepting that they do exist, but refusing to define the probability measure over them. The
latter turns out to be much more productive, because the notion of restricting the proba-
bility measure to only given subsets has many versatile uses, including a generalization of
the notion of conditioning.
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