Lecture 14: November 16, 2021
Lecturer: Madhur Tulsiani

1 Threshold Phenomena in Random Graphs

We consider a model of Random Graphs by Erdős and Rényi [ER60]. To generate a random graph with n vertices, for every pair of vertices $\{i, j\}$, we put an edge independently with probability p. This model is denoted by $\mathcal{G}_{n, p}$.
Let G be a random $\mathcal{G}_{n, p}$ graph and let H be any fixed graph (on some constant number of vertices independent of n). We will be interested in understanding the probability that G contains a copy of H. We start by computing this when H is K_{4}, the clique on 4 vertices.

Definition 1.1 We define k-clique to be a fully connected graph with k vertices.

Figure 1: 4-Clique
As a convention, we will count a permutation of a copy of K_{4} as the same copy. We define the random variable

$$
Z=\text { number of copies of } K_{4} \text { in } G=\sum_{C} X_{C}
$$

where C ranges over all subsets of V of size 4 and the random variable X_{C} is defined as

$$
X_{C}=\left\{\begin{array}{ll}
1 & \text { if all pair of vertices in the set } C \text { have an edge in between them } \\
0 & \text { otherwise }
\end{array} .\right.
$$

We have $\mathbb{E}\left[X_{C}\right]=p^{6}$, since the probability of connecting all 4 vertices (using 6 edges) in the 4 -tuple is p^{6}. So we have the expectation of Z :

$$
\mathbb{E}[Z]=\sum_{C} \mathbb{E}\left[X_{C}\right]=\binom{n}{4} \cdot p^{6}
$$

We observe that

$$
\mathbb{E}[Z] \rightarrow 0 \text { when } p \ll n^{-2 / 3} \quad \text { and } \quad \mathbb{E}[Z] \rightarrow \infty \text { when } p \gg n^{-2 / 3}
$$

Here, by $p \ll n^{-2 / 3}$, we mean that $\lim _{n \rightarrow \infty}\left(p / n^{-2 / 3}\right)=0$ and $p \gg n^{-2 / 3}$ is defined similarly. We will prove that there is in fact a threshold phenomenon in the probability that G contains a copy of K_{4}. When $p \ll n^{-2 / 3}$, the probability that a random graph G generated according to model $\mathcal{G}_{n, p}$ contains a copy of K_{4}, goes to 0 as $n \rightarrow \infty$. On the other hand, when $p \gg n^{-2 / 3}$, this probability tends to 1 .

Theorem 1.2 Let G be generated randomly according to the model $\mathcal{G}_{n, p}$ graph. We have that:

- If $p \ll n^{-2 / 3}$, then $\mathbb{P}\left[G\right.$ contains a copy of $\left.K_{4}\right] \rightarrow 0$ as $n \rightarrow \infty$.
- If $p \gg n^{-2 / 3}$, then $\mathbb{P}\left[G\right.$ contains a copy of $\left.K_{4}\right] \rightarrow 1$ as $n \rightarrow \infty$.

Proof: As above, we define the random variable Z,

$$
Z=\text { number of copies of } K_{4} \text { in } G=\sum_{C} X_{C} .
$$

The case when $p \ll n^{-2 / 3}$ can be easily handled by Markov's inequality. We get that,

$$
\mathbb{P}[Z>0]=\mathbb{P}[Z \geq 1] \leq \frac{\mathbb{E}[Z]}{1}
$$

Since $\mathbb{E}[Z] \rightarrow 0$ as $n \rightarrow \infty$ when $p \ll n^{-2 / 3}$, we get that $\mathbb{P}\left[G\right.$ contains a copy of $\left.K_{4}\right] \rightarrow 0$.
When $p \gg n^{-2 / 3}$, we want to show that $\mathbb{P}[Z>0] \rightarrow 1$, i.e., $\mathbb{P}[Z=0] \rightarrow 0$. We use Chebyshev's inequality to prove this. We first compute the variance of Z.

$$
\operatorname{Var}[Z]=\operatorname{Var}\left[\sum_{C} X_{C}\right]=\sum_{C} \operatorname{Var}\left[X_{C}\right]+\sum_{C \neq D} \operatorname{Cov}\left[X_{C}, X_{D}\right]
$$

Since $\mathbb{E}\left[X_{C}\right]=p^{6}$, we have $\operatorname{Var}\left[X_{C}\right]=p^{6}-p^{12}$. Also, for two distinct sets C and D, we consider four different cases depending on the number of vertices they share.

- Case 1: $|C \cap D|=0$. Since no vertex is shared, X_{C} and X_{D} are independent and hence $\operatorname{Cov}\left[X_{C}, X_{D}\right]=0$.
- Case 2: $|C \cap D|=1$. Since the variables X_{C} and X_{D} depend on pairs of vertices in the sets C and D, and the two sets do not share any pair, we still have $\operatorname{Cov}\left[X_{C}, X_{D}\right]=0$.
- Case 3: $|C \cap D|=2$. Since C and D share a pair of vertices, there are 11 pairs which must all have edges between them in G, for both X_{C} and X_{D} to be 1 . Thus, we have $\mathbb{E}\left[X_{C} X_{D}\right]=p^{11}$ and

$$
\operatorname{Cov}\left[X_{C}, X_{D}\right]=\mathbb{E}\left[X_{C} X_{D}\right]-\mathbb{E}\left[X_{C}\right] \cdot \mathbb{E}\left[X_{D}\right]=p^{11}-p^{12}
$$

- Case 4: $|C \cap D|=3$. in this case C and D share 3 pairs and thus there are 9 distinct pairs of vertices which must all have edges between them for both X_{C} and X_{D} to be 1. Thus,

$$
\operatorname{Cov}\left[X_{C}, X_{D}\right]=\mathbb{E}\left[X_{C} X_{D}\right]-\mathbb{E}\left[X_{C}\right] \cdot \mathbb{E}\left[X_{D}\right]=p^{9}-p^{12}
$$

Also, there are $\binom{n}{6} \cdot\binom{6}{4}$ pairs C and D such that $|C \cap D|=2$, and $\binom{n}{5} \cdot\binom{5}{4}$ pairs such that $|C \cap D|=3$. Combining the above cases we have,

$$
\begin{aligned}
\operatorname{Var}[Z] & =\sum_{C} \operatorname{Var}\left[X_{C}\right]+\sum_{C \neq D} \operatorname{Cov}\left[X_{C}, X_{D}\right] \\
& =\binom{n}{4} \cdot p^{6}\left(1-p^{6}\right)+\binom{n}{6} \cdot\binom{6}{4} \cdot\left(p^{11}-p^{12}\right)+\binom{n}{5} \cdot\binom{5}{4} \cdot\left(p^{9}-p^{12}\right) \\
& =O\left(n^{4} p^{6}\right)+O\left(n^{6} p^{11}\right)+O\left(n^{5} p^{9}\right) .
\end{aligned}
$$

Applying Chebyshev's inequality gives

$$
\begin{aligned}
\mathbb{P}[Z=0] \leq \mathbb{P}[|Z-\mathbb{E}[Z]| \geq \mathbb{E}[Z]] & \leq \frac{\operatorname{Var}[Z]}{(\mathbb{E}[Z])^{2}} \\
& =\frac{1}{\binom{n}{4}^{2} \cdot p^{12}} \cdot\left(O\left(n^{4} p^{6}\right)+O\left(n^{6} p^{11}\right)+O\left(n^{5} p^{9}\right)\right) \\
& =O\left(\frac{1}{n^{4} p^{6}}\right)+O\left(\frac{1}{n^{2} p}\right)+O\left(\frac{1}{n^{3} p^{3}}\right)
\end{aligned}
$$

For $p \gg n^{-2 / 3}$, all the terms on the right tend to 0 as $n \rightarrow \infty$. Hence, $\mathbb{P}[Z=0] \rightarrow 0$ as $n \rightarrow \infty$.

The above analysis can be extended to any graph H of a fixed size. Let Z_{H} be the number of copies of H in a random graph G generated according to $G_{n, p}$. Using the previous analysis, we have $\mathbb{E}\left[Z_{H}\right]=\Theta\left(n^{|V(H)|} \cdot p^{|E(H)|}\right)$. Hence, $\mathbb{E}[Z] \rightarrow 0$ when $p \ll n^{-|V(H)| /|E(H)|}$ and $\mathbb{E}[Z] \rightarrow \infty$ when $p \gg n^{-|V(H)| /|E(H)| \text {. Thus, it might be tempting to conclude that }}$ $p=n^{-|V(H)| /|E(H)|}$ is the threshold probability for finding a copy of H. However, con-

Figure 2: Subgraph H containing K_{4}
sider the graph in Figure 2. For this graph, we have $|V(H)| /|E(H)|=5 / 7$. But for p such that $p \gg n^{-5 / 7}$ and $p \ll n^{-2 / 3}$, a random G is extremely unlikely to contain a copy of K_{4} and thus also extremely unlikely to contain a copy of H. For an arbitrary graph H, it was shown by Bollobás [Bol81] that the threshold probability is $n^{-\lambda}$, where

$$
\lambda=\min _{H^{\prime} \subseteq H} \frac{\left|V\left(H^{\prime}\right)\right|}{\left|E\left(H^{\prime}\right)\right|}
$$

2 Chernoff/Hoeffding Bounds

We now derive sharper concentration bounds for sums of independent random variables. We start by considering n independent Boolean random variables X_{1}, \ldots, X_{n}, where X_{i} takes value 1 with probability p_{i} and 0 otherwise. Let $Z=\sum_{i=1}^{n} X_{i}$. We set $\mu=\mathbb{E}[Z]=$ $\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\sum_{i=1}^{n} \mu_{i}$. We will try to derive a bound on the probability $\mathbb{P}[Z \geq t]$ for $t=(1+\delta) \mu$. Using the fact that the function e^{x} is strictly increasing, we get that for $\lambda>0$

$$
\mathbb{P}[Z \geq(1+\delta) \mu]=\mathbb{P}\left[e^{\lambda Z} \geq e^{\lambda(1+\delta) \mu}\right] \stackrel{\text { Markov) }}{\leq} \frac{\mathbb{E}\left[e^{\lambda Z}\right]}{e^{\lambda(1+\delta) \mu}}
$$

We now have:

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda Z}\right]=\mathbb{E}\left[e^{\lambda\left(X_{1}+\ldots X_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] & \stackrel{(\text { independence })}{=} \prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda X_{i}}\right] \\
& =\prod_{i=1}^{n}\left[\mu_{i} e^{\lambda}+\left(1-\mu_{i}\right)\right] \\
& =\prod_{i=1}^{n}\left[1+\mu_{i}\left(e^{\lambda}-1\right)\right] .
\end{aligned}
$$

At this point, we utilize the simple but very useful inequality:

$$
\forall x \in R, \quad 1+x \leq e^{x}
$$

Since all the quantities in the previous calculation are non-negative, we can plug the above inequality in the previous calculation and we get:

$$
\mathbb{E}\left[e^{\lambda Z}\right] \leq \prod_{i=1}^{n} \exp \left(\left(e^{\lambda}-1\right) \mu_{i}\right)=\exp \left(\left(e^{\lambda}-1\right) \mu\right)
$$

Thus, we get

$$
\mathbb{P}[Z \geq(1+\delta) \mu] \leq \exp \left(\left(e^{\lambda}-1\right) \mu-\lambda(1+\delta) \mu\right)
$$

We now want to minimize the right hand-side of the above inequality, with respect to λ. Setting the derivative of the exponent to zero, we get

$$
e^{\lambda} \mu-(1+\delta) \mu=0 \quad \Rightarrow \quad \lambda=\ln (1+\delta)
$$

Using this value for λ, we get

$$
\mathbb{P}[Z \geq(1+\delta) \mu] \leq \frac{\exp \left(\left(e^{\lambda}-1\right) \mu\right)}{\exp (\lambda(1+\delta) \mu)}=\frac{e^{\delta \mu}}{(1+\delta)^{(1+\delta) \mu}}=\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}
$$

Exercise 2.1 Prove similarly that

$$
\mathbb{P}[Z \leq(1-\delta) \mu] \leq\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}
$$

(Note that $\mathbb{P}[Z \leq(1-\delta) \mu]=\mathbb{P}\left[e^{-\lambda Z} \geq e^{-\lambda(1-\delta) \mu}\right]$.) When $\delta \in(0,1)$, the bounds above expressions can be simplified further. It is easy to check that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \leq e^{-\delta^{2} \mu / 3}, 0<\delta<1
$$

So we get:

$$
\mathbb{P}[Z \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3}, \quad \text { for } 0<\delta<1
$$

Similarly:

$$
\mathbb{P}[Z \leq(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 3}, \quad \text { for } 0<\delta<1
$$

Combining the two we get

$$
\mathbb{P}[|Z-\mu| \geq \delta \mu] \leq 2 \cdot e^{-\delta^{2} \mu / 3}, \quad \text { for } 0<\delta<1
$$

The above is only one of the proofs of the Chernoff-Hoeffding bound. A delighful paper by Mulzer [Mul18] gives several other proofs with different applications.

2.1 Coin tosses once more

We will now compare the above bound with what we can get from Chebyshev's inequality. Let's assume that X_{1}, \ldots, X_{n} are independent coin tosses, with $\mathbb{P}\left[X_{i}=1\right]=\frac{1}{2}$. We want to get a bound on the value of $Z=\sum_{i=1}^{n} X_{i}$. Using Chebyshev's inequality, we get that

$$
\mathbb{P}[|Z-\mu| \geq \delta \mu] \leq \frac{\operatorname{Var}[Z]}{\delta^{2} \mu^{2}}
$$

And since in this particular case we have that $\operatorname{Var}[Z]=n / 4$ and $\mu=n / 2$, we get that

$$
\mathbb{P}[|Z-\mu| \geq \delta \mu] \leq \frac{1}{\delta^{2} n} .
$$

The above bound is only inversely polynomial in n, while the Chernoff-Hoeffding bound gives

$$
\mathbb{P}[|Z-\mu| \geq \delta \mu] \leq 2 \cdot \exp \left(-\delta^{2} n / 6\right),
$$

which is exponentially small in n. This fact will prove very useful when taking a union bound over a large collection of events, each of which may be bounded using a ChernoffHoeffding bound.

References

[Bol81] Béla Bollobás, Threshold functions for small subgraphs, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 90, Cambridge Univ Press, 1981, pp. 197-206. 4
[ER60] Paul Erdős and A Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci 5 (1960), 17-61. 1
[Mul18] Wolfgang Mulzer, Five proofs of Chernoff's bound with applications, Bulletin of EATCS 1 (2018), no. 124.5

