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1 Randomized polynomial identity testing

We use our knowledge of events and conditioning, to prove the following lemma, which
gives an algorithm for testing if a polynomial f in n variables x1, . . . , xn over a field F is
identically zero. While this is usually referred to as the Schwartz-Zippel lemma, or the
DeMillo-Lipton- Schwartz-Zippel lemma, it actually has a longer history as described in
(Section 3.1 of) this article by Arvind et al. [AJMR19]. We refer to it as the polynomial
identity lemma.

Lemma 1.1 (Polynomial identity lemma) Let f (x1, x2, . . . , xn) be a non-zero polynomial of
degree d ≥ 0, i.e.,

f (x1, x2, . . . , xn) = ∑ ci1i2 ...in · xi1
1 · xi2

2 · · · xin
n

s.t., i1 + i2 + . . . + in ≤ d

over a field, F. Let S ⊆ F, be a finite subset and let x1, x2, . . . , xn be selected uniformly at random
from S, independently. Then,

P [ f (x1, x2, . . . , xn) = 0] ≤ d
|S| .

Proof: We will prove this lemma by induction on n. This lemma can be proved simply by
using conditional probability.

Base Case : n = 1
A non zero polynomial, f (x1) can have at most d roots. Hence, P [ f (x1) = 0] ≤ d

|S| .

Induction Step
Assume that the lemma holds for any polynomial in n− 1 variables. We need to prove that
it holds true for f (x1, x2, . . . , xn). We can write f as:

f (x1, x2, . . . , xn) = xk
1 · g(x2, . . . , xn) + h(x1, x2, . . . , xn)
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where, k is largest degree of x1. Thus we have 0 < k ≤ d (if k = 0 then we are already
done). We also have that deg(g(x2, . . . , xn)) ≤ d − k.

Now let us define two events.

E ≡ { f (x1, x2, . . . , xn) = 0} and F ≡ {g(x2, . . . , xn) = 0}

We can then write,

P [E] = P [F] · P [E|F] + P [¬F] · P [E|¬F] .

We now analyze each of the terms. By the induction hypothesis, we have

P [F] = P [g(x2, . . . , xn) = 0] =
d − k
|S| .

Also, fixing the values of x2 = a2, . . . , xn = an such that g(a2, . . . , an) ̸= 0, f (x1, a2, . . . , an)
is a degree-k polynomial in x1. Thus, using the base case, we get that

P [E|¬F] ≤ k
|S| .

Bounding the other two probabilities by 1, we get that

P [E] ≤ d − k
|S| · 1 + 1 · k

|S| =
d
|S|

as desired.

1.1 An application: bipartite perfect matching

Consider the following example which applied the Schwartz-Zippel lemma for testing if a
given bipartite graph has a perfect matching. Given a bipartite graph, G = (U, V, E) with
|U| = |V| = n, we say that the graph has a perfect matching, if there exists a set E′ ⊆ E of
n edges, with exactly one edge in E′ being incident on every vertex of G.

Let us define the Tutte matrix A as

Aij =

{
xij if (i, j) ∈ E
0 else

Note that A is not necessarily symmetric. The determinant of A can be written as,

Det(A) = ∑
π:[n]→[n]

sign(π)
n

∏
i=1

Ai,π(i)

where π defines the permutation from rows to columns. Note that the determinant is a
degree-n polynomial in the variables xij. Verify the follwing:
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Exercise 1.2 G has a perfect matching if and only if Det(A) ̸≡ 0.

In this case, computing the determinant is expensive with n! terms. But if we are given
the values of the variables xij, we can simply compute the determinant using the Gaus-
sian elimination method. The degree of the polynomial above is n. Thus, if we assign
all variables randomly from a set of 2n real values, if Det(A) ̸≡ 0, we will detect it with
probability at least 1/2.

The randomized algorithm given by the polynomial identity lemma can be used to par-
allelize the checking as well. There is no known deterministic algorithm for this problem
which can be parallelized efficiently.

2 The probabilistic method

We now come to very powerful method for proving the existence of several interesting
combinatorial objects. The general framework, known as the “probabilistic method” has
many variants explored in the beautiful (and highly recommended!) book on the subject
by Alon and Spencer [AS08].

We will explore vanilla version of the method, known as the first moment method, which
only requires computing expectations. At the heart of it is the simple idea captured by the
following proposition.

Proposition 2.1 Let X : Ω → R be a random variable such that E [X] ≥ c for some c ∈ R. Then,
there exists ω ∈ Ω (with probability measure ν(ω) > 0) such that X(ω) ≥ c.

Proof: Suppose that for all ω ∈ Ω with ν(ω) > 0, we have X(ω) < c. Then,

E [X] = ∑
ω∈Ω

ν(ω) · X(ω) < ∑
ω∈Ω

ν(ω) · c = c ,

which contradicts the fact that E [X] ≥ c.

Exercise 2.2 Prove that if E [X] ≤ c, then there exists ω ∈ Ω (with ν(ω) > 0) such that
X(ω) ≤ c.

Exercise 2.3 Is it true that if E [X] = c, then there exists ω ∈ Ω with X(ω) = c?

The above simple proposition can yield very interesting results, when the random variable
X is set-up properly. In particular, when we want X to measure some property of a com-
binatorial object, and we set up the distribution such that E [X] is close to some bound we
are interested in, we get that there exists a combinatorial object achieving those bounds.
We will see a few examples of this principle.
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2.1 A randomized algorithm for Max 3-SAT

Recall that a 3-SAT formula φ is of the form

φ ≡ C1 ∧ · · · ∧ Cm ,

where each Ci is a clause of the form Ci = (li1 ∨ li2 ∨ li3) and each lij is in turn xij or its
negation xij . We assume that each clause contains three distinct variables.

In the problem Max 3-SAT, the goal is not necessarily to satisfy all the clauses, but rather
find an assignment to the variables which satisfies as many clauses as possible. We show
that for any formula φ with m clauses, there exists an assignment satisfying 7m/8 clauses.
Moreover, this can be turned into an algorithm, and one can efficiently find an assignment
satisfying 7m/8 clauses.

Consider assigning each of the variables x1, . . . , xn a value in {0, 1} independently at ran-
dom. Let Z be a random variable equal to the number of clauses satisfied by the random
assignment. We can write

Z = Y1 + · · ·+ Ym ,

where Yi if the clause Ci is satisfied and 0 otherwise. By linearity of expectation E [Z] =
∑m

i=1 E [Yi]. Note Ci = (li1 ∨ li2 ∨ li3) is not satisfied if and only if li1 = li2 = li3 = 0
which happens with probability 1/8 since the three literals correspond to three distict vari-
ables, which are assigned values 0 and 1 independently with probability 1/2 each. Thus,
P [Yi = 0] = 1/8, which gives

E [Z] =
m

∑
i=1

E [Yi] =
m

∑
i=1

(
1 − 1

8

)
=

7m
8

.

Thus, there exists an assignment which satisfies at least 7m/8 clauses. We now argue that
it can be found efficiently. Note that

E [Z] =
1
2
· E [Z | x1 = 0] +

1
2
· E [Z | x1 = 1] .

Thus, at least one of the expectations on the right hand side must be at least 7m/8. We now
need the fact that each of these expectations can be computed efficiently.

Exercise 2.4 Given access to the 3-SAT formula φ, the expectations E [Z | x1 = 0] and E [Z | x1 = 1]
can both be computed in time O(m) where m is the number of clauses. Actually, it is also possible
to do this in time O(t) if x1 appears in only t clauses and we are given the list of these clauses.

Using the above, we can find a value b1 ∈ {0, 1} such that

E [Z | x1 = b1] ≥ 7m
8

.
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Continuing similarly by induction, we can find b1, . . . , bn such that

E [Z | x1 = b1, . . . , xn = bn] ≥ 7m
8

.

Since Z is fixed given the values of all the variables, we get that the assignment (b1, . . . , bn)
satisfies at least 7m/8 clauses.
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