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1 Independence

Recall that two non-zero probability events A and B are said to be independent if P [A | B] =
P [A]. One can verify that this is equivalent to P [B | A] = P [B]. In other words, restrict-
ing to one event does not change the probability of the other event. Independence is a
joint property of events and the probability measure: one cannot make judgment about
independence without knowing the probability measure.

Two random variables X and Y defined on the same finite probability space are defined
to be independent if P [X = x | Y = y] = P [X = x] for all non-zero probability events
{X = x} := {ω : X(ω) = x} and {Y = y} := {ω : Y(ω) = y}.

The notion of independence can also be generalized (in multiple ways) beyond the case
of two events or random variables. We say n events A1, ..., An are mutually independent
(sometimes we will just say “independent”, since this the most commonly used notion of
independence for multiple events) if for all subsets S ⊆ {1, ..., n} we have:

P

(⋂
i∈S

Ai

)
= ∏

i∈S
P(Ai) .

We say n random variables X1, ..., Xn are mutually independent if for all values x1, ..., xn,
the events “X1 = x1”, ..., “Xn = xn” are mutually independent.

There are also weaker notions of independence that are often useful. We say n events are
pairwise independent if all pairs are independent, and likewise for random variables i.e., we
have the above condition only for sets S of size two.

∀S ⊆ {1, . . . , n}, |S| = 2 P

(⋂
i∈S

Ai

)
= ∏

i∈S
P(Ai) .

More generally, the notion of k-wise independence is defined by considering the above
condition for all S with |S| ≤ k.

Exercise 1.1 Can you think of three events, or three random variables, that are pairwise indepen-
dent but not mutually independent?
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We saw that for any two random variables X and Y we have E [X] + E [Y] = E [X + Y].
However, it is not in general the case that E [X] ·E [Y] = E [X · Y] (for example, suppose X
and Y are indicator random variables for the same event of probability p; then the LHS is
p2 but the RHS is p). Nonetheless, we do get this property when X and Y are independent.

Proposition 1.2 Let X, Y : Ω → R be two independent random variables. Then

E [X · Y] = E [X] · E [Y] .

Proof:

E [X] · E [Y] =

(
∑

a
P(X = a) · a

)
·
(

∑
b

P(Y = b) · b

)
= ∑

a,b
a · b · P(X = a) · P(Y = b)

= ∑
a,b

a · b · P(X = a ∧ Y = b) (by independence)

= ∑
c

∑
(a,b):ab=c

a · b · P(X = a ∧ Y = b) (grouping)

= ∑
c

c · P(X · Y = c) = E [X · Y] .

Exercise 1.3 Check that the converse of the above statement is false i.e., there are random variables
X, Y such that E [X · Y] = E [X] · E [Y], but X and Y are not independent.

1.1 The countably infinite case

The concepts defined in the previous and current lecture for finite probability spaces ex-
tend almost verbatim to the the case when the space Ω is countablly infinite i.e., there
exists a bijection from Ω to the set N of natural numbers. However, we need to be careful
about the convergence of summations over ω ∈ Ω as these may be inifinite sums, which
need to be defined via limits. The extension to the case of uncountably infinite Ω (such as
Ω = [0, 1]) requires some additional concepts, and we will discuss this in a later lecture.
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2 Some important random variables

2.1 Variance

We will now see some very useful random variables. We will also compute the expectation,
and another quantity called the variance of these random variables, which is a commonly
used measure of how “spread” is a random variable. For example a variable X which is
always 0, and Y which is ±1 with probability 1/2 each, have the same expectation, but the
notion of variance can be used to capture the fact that the distribution of Y is spread over
more values than that of X (i.e., Y varies more than X).

For a (real-valued) random variable X, the variance is defined as

Var [X] := E
[
(X − E [X])2

]
Note that the inner expectation is a constant. Using (say) µ to denote E [X], we can also
write another expression for the variance.

Var [X] = E
[
(X − µ)2] = E

[
X2 − 2µ · X + µ2] = E

[
X2]− 2µ2 + µ2 = E

[
X2]− µ2 .

Thus, we can use either of the two expressions below to compute the variance.

Var [X] = E
[
(X − E [X])2

]
= E

[
X2]− (E [X]) .

Since the first expression is always non-negative, we also get a proof of the very useful
inequality that E

[
X2] ≥ (E [X])2.

Exercise 2.1 Can you derive the inequality E
[
X2] ≥ (E [X])2 using the Cauchy-Schwarz-Bunyakovsky

inequality?

2.2 Bernoulli random variables

A Bernoulli(p) random variable X is defined as taking the value 1 with probability p and
the value 0 with probability 1 − p. We can write this as P [X = x] = px(1 − p)1−x. One
may intuitively think of a Bernoulli random variable as the indicator function of “heads”
in an outcome space Ω = {tails, heads} of a biased coin toss. Alternatively, we simply
take the outcome space to be Ω = {0, 1}. More generally, indicator functions of events are
Bernoulli random variables.

Let X be a Bernoulli(p) random variable. Then, we have

E [X] = 1 · p + 0 · (1 − p) = p = P [X = 1] .
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The fact that for a Bernoulli random variable X, E [X] = P [X = 1] is extremely useful,
particularly when combined with the linearity of expectation, to analyze random variables
which can be written as a sum of Bernoulli variables. We can also compute Var [X], using
the fact that X2 = X, since X ∈ {0, 1}

Var [X] = E
[
X2]− (E [X])2 = p − p2 = p · (1 − p) .

2.3 Finite Bernoulli i.i.d. sequences and Binomial random variables

Another important random variable is a sum of (mutually)indepependent and indentical
Bernoulli random variables. We first define the probability space corresponding to a (fi-
nite) collection of Bernoulli variables.

Finite Bernoulli i.i.d. sequence We can also think of a sequence of coin tosses, with

Xi =

{
1 if toss i is heads
0 if toss i is tails

.

being n Bernoulli random variables in the probability space Ωn = {0, 1}n, i.e., Xi(ω) = ωi.
Define the product probability measure on this finite space using:

νn(ω) =
n

∏
i=1

pωi(1 − p)1−ωi .

Note that if p = 1
2 , we have νn(ω) = 1

2n , i.e., Pn is the uniform distribution over the
outcome space, as all outcomes are equally likely.

Exercise 2.2 For the outcome space defined above, verify that:

• For any fixed i, Xi is indeed a Bernoulli(p) random variable, and

• If I ⊂ [n] and J ⊂ [n] are disjoint, then any function of XI and any function of Xj are
independent random variables.

As noted in the previous lecture, when the latter point holds, we simply say that X1, · · · , Xn
are (mutually) independent. Furthermore since all the Xi have the same distribution, we
call the sequence i.i.d., meaning independent and identically distributed.
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Binomial random variables Let Zn be a random variable counting the number of heads
associated with n independent biased coin tosses. We can model this in Ωn above as Zn =

∑ Xi.

Let us calculate the expectation of Z. By linearity we have E [Zn] = ∑ E [Xi]. Since Zn =

∑ Xi, we have, E [Zn] = ∑ E [Xi]. Now,

E [Xi] = 1 · P [Xi = 1] + 0 · P [Xi = 0]
= P [Xi = 1] = p

Hence E [Zn] = n · p. Note that we did not use independence in the above calculations.
We just needed that for each i, E [Xi] = p. Let us now compute the variance.

Var [Zn] = E
[
Z2

n
]
− (E [Zn])

2 = E
[
Z2

n
]
− (n · p)2 .

Thus, we need to compute the first term E
[
Z2

n
]

to understant the variance. We can write

E
[
Z2

n
]
= E

( n

∑
i=1

Xi

)2


= E

[(
∑
i,j

Xi · Xj

)]
= ∑

i,j
E
[
Xi · Xj

]
= ∑

i
E
[
X2

i
]
+ ∑

i ̸=j
E
[
Xi · Xj

]
= n · p + n(n − 1) · p2 ,

where we used the fact that E
[
Xi · Xj

]
= E [Xi] · E

[
Xj
]
= p2 using independence, when

i ̸= j. Using the above, we get that

Var [Zn] = n · p + n(n − 1) · p2 − n2 · p2 = n · p − n · p2 = n · p(1 − p) = ∑
i
Var [Xi] .

Exercise 2.3 Check that for any collection of pairwise independent (and not necessarily identi-
cal) random variables X1, . . . , Xn, we still have that for Z = ∑i Xi

Var [Z] = ∑
i
Var [Xi] .

We do need independence, and namely the product probability measure, to calculate
P(Zn = k) for k ∈ [n] (this is often called the probability mass function. First note that
the shorthand (Zn = k) simply means {ω ∈ Ω : Zn(ω) = k}. Since all ω that have the
same number (in this case k) of 1’s have the same probability, we simply need to count
how many such ω’s there are, and multiply by this individual probability.
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Exercise 2.4 Verify that Pn(Zn = k) = (n
k)pk(1 − p)n−k.

Zn is called a Binomial(n, p) random variable.

2.4 Infinite Bernoulli i.i.d. sequence and Geometric random variables

We would like to generalize the Bernoulli sequence probability space to an infinite se-
quence. We would like to choose Ω = {0, 1}N as our outcome space, but this is not a
countable set. We will come back to the issue of properly defining the probability space
with this uncountable Ω.

For now, if we still consider the mental experiment of infinite i.i.d. Bernoulli(p) sequence
of random variables X1, X2, · · · , which we interpret once more as coin tosses. We define
Y be the number of tosses till the first heads. If we are just interested in Y (the first heads
rather than all outcomes of all tosses), we can take Ω to be N.

Exercise 2.5 Although we cannot define a countable probability space for the infinite i.i.d. Bernoulli
sequence, show that if we just want define a space for Y, we can take Ω = N and P(i) =
(1 − p)i−1 · p for i ≥ 1.

Y is known as a Geometric(p) random variable.

Let us calculate E[Y], in a somewhat creative way. Let E be the event that the first toss is
heads. Then by total expectation we have,

E [Y] = E [Y|E] · P [E] + E [Y|Ec] · P [Ec]

= 1 · P [E] + (1 + E [Y]) · (1 − p)

Thus we have, E [Y] = 1
p . The main observation that we used here is that, thanks to

independence, when the first toss is not heads, then the problem resets (with the hindsight
of one consumed toss).

Exercise 2.6 Compute Var [Y] for a Geometric(p) random variable Y.

3 Coupon Collection

Consider the following problem: There are n kinds of items/coupons and at each time step
we get one coupon chosen to be from one of the n types at random. All types are equally
likely at each step and the choices at different time steps are independent. We define a
random variable, T which is the time when we first have all the n types of coupons. Find
E [T].
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We can make the following claim:

T =
n

∑
i=1

Xi ,

where Xi is the time to get from the i − 1 to the i types of coupons. Thus we have,

E [T] = ∑
i

E [Xi]

Note that Xi is a geometric random variable with parameter n−i+1
n , since if we have i − 1

type of coupons, Xi represents the time till we receive a coupon belonging to any one of
the remaining n − i + 1 types. Thus,

E [Xi] =
n

n − i + 1
.

Therefore,
E [T] =

n
n
+

n
n − 1

+
n

n − 2
+ · · ·+ n

1
= n · H(n)

where Hn = 1 + 1
2 +

1
3 + · · ·+ 1

n is the nth harmonic number. It is known (see Wikipedia for
example) that Hn = ln n + Θ(1). Thus, we have that E [T] = n ln n + Θ(n).
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