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Known Results

•Constant 𝑘 ⇒ Efficient algorithm       [Robertson, Seymour ’90]

•𝑘 part of input ⇒ NP-Hard       [Karp ’72]

•𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

•Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05], 

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

•What about simpler cases?
◦ Analysis of 𝑂 𝑛 -approx. algorithm is tight on grids! 



NDP-Grid

•𝑂(𝑛1/4) −approx. for NDP-Grid [Chuzhoy, Kim ‘15]

•𝑛Ω 1/(log log 𝑛)^2 hardness [Chuzhoy, Kim, N. ‘18]
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2Ω log 𝑛 −hard 2O log 𝑛 −approximation

Grid with holes
Grid with sources 

on boundary

2Ω log0.99 𝑛 −hard

Grid with sources 
far from boundary

[Chuzhoy, Kim, N. ‘17] [Chuzhoy, Kim, N. ‘18]This Result
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•A natural way to solve NDP

•Relax “integrality of flow 
paths” requirement

[Kolliopoulos, Stein ‘98] Approx. Algorithm
While there is a path with 𝑓𝑙𝑜𝑤 𝑃 > 0:
• Add such shortest path 𝑃 to the solution
• Delete vertices of 𝑃 from the graph

Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

On grid with sources and destinations on boundary, integrality gap is Ω 𝑛 

𝑂𝑃𝑇𝐿𝑃 ≥ 𝑂𝑃𝑇

𝑛-approximation algorithm!
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•On grid with sources and destinations close to boundary, 
integrality gap is Ω 𝑛 

• But DP works in this regime ☺

•𝑂(𝑛1/4)-approx for NDP-Grid [Chuzhoy, Kim ‘15]

•Even when sources and destinations are far boundary, 
integrality gap remains Ω 𝑛1/8  [Chuzhoy, Kim ‘15]
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Beyond Multicommodity Flows

1. Write a LP to select a good set of demand pairs

2. Use a separate combinatorial algorithm for routing

Assume for simplicity:
• All sources and destinations are distinct

• All sources lie on top boundary

• All destinations lie on a single row at 
distance ≫ 𝑂𝑃𝑇 from grid boundaries

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑡1 𝑡2𝑡3 𝑡4 𝑡5

𝑛

𝑛
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𝑛

𝑛

Looks very inefficient…

Use Recursive Partitioning!

• To route 𝑛1/4 demand pairs, need 
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Recursive Partitioning

Don’t really need all the destinations to be that far from 
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance        
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

◦ Destination-intervals are at 
distance ≫ 𝑥 from each other

≫ 𝑥



Recursive Partitioning

Routing in two parts
• “Global Routing”

• “Local Routing”

Theorem: Recursive Partitioning Property holds for 
𝑥 demand pairs ⇒ can route all 𝑥 demand pairs
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Recursive Partitioning

Recursive Partitioning = “hierarchical set of intervals” and 
“hierarchical assignment” of colors

…

…

Each interval on destination-row 
is hierarchically mapped to a 

unique interval on source-row

Nested intervals on source-row 
and nested intervals on 

destination-row



Recursive Partitioning | Why?

Theorem: 𝑂𝑃𝑇𝑅𝑃 ≥ 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛

Largest subset of demand 
pairs with Recursive 
Partitioning Property

Value of the optimum 
NDP-Grid solution
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Recursive Partitioning | How?

Theorem: Can efficiently find a set of 𝑂𝑃𝑇𝑅𝑃/2
𝑂 log 𝑛

demand pairs with Recursive Partitioning Property

Idea: 
• Find a small collection of candidate 

hierarchical sets of intervals such that one of 
them has this property

• Solve for each candidate separately
• Return the best solution

Write LP and perform 
randomized rounding 

level by level
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Final Algorithm

•Find a set of 𝑂𝑃𝑇𝑅𝑃/ 2
𝑂 log 𝑛 demand pairs with 

Recursive Partitioning Property

•Route all of them!

Recall: 𝑂𝑃𝑇𝑅𝑃 ≥ 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛

We route 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛 demand pairs 
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Conclusion

•2 ෨𝑂 log 𝑛 -approximation algorithm for NDP-Grids if 
sources appear on the boundary

•𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for NDP- Grids 
if sources are at distance ≤ 𝛿 from the boundary

•Only APX-hardness is known for NDP-Grid with 
sources on the boundary
Better hardness results for this case?

•Congestion minimization?
• Route everything, but minimize load
• 𝑂(log 𝑛 / log log 𝑛)-approx
•Ω log log 𝑛 -hardness Thank You!


