
Improved Approximation for
Node-Disjoint Paths in Grids with
Sources on the Boundary
JULIA CHUZHOY DAVID KIM RACHIT NIMAVAT

ICALP, 2018

Node-Disjoint Paths (NDP)

Input: Undirected graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Node-Disjoint Paths (NDP)

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Sources Destinations

Input: Undirected graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

Node-Disjoint Paths (NDP)

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Goal: Route as many pairs as possible
via node-disjoint paths

Sources Destinations

Input: Undirected graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

Node-Disjoint Paths (NDP)

𝑠1

𝑠2

𝑠3

𝑡3

𝑡2

𝑡1

Goal: Route as many pairs as possible
via node-disjoint paths

OPT: 2

Sources Destinations

Input: Undirected graph and demand pairs 𝑠1, 𝑡1 , … , 𝑠𝑘 , 𝑡𝑘

Known Results

•Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

Known Results

•Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

◦ FPT algorithm: 𝑓 𝑘 ⋅ 𝑛2 [Robertson, Seymour ’90 → Kawarbayashi, Kobayashi, Reed ‘12]

22
22

..
. 𝑘

Known Results

•Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

•𝑘 part of input ⇒ NP-Hard [Karp ’72]

Known Results

•Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

•𝑘 part of input ⇒ NP-Hard [Karp ’72]

•𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

•Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

Known Results

•Constant 𝑘 ⇒ Efficient algorithm [Robertson, Seymour ’90]

•𝑘 part of input ⇒ NP-Hard [Karp ’72]

•𝑂 𝑛 −approx. [Kolliopoulos, Stein ‘98]

•Roughly Ω log 𝑛 −hardness of approx. [Andrews, Zhang ‘05],

[Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang ’10]

•What about simpler cases?
◦ Analysis of 𝑂 𝑛 -approx. algorithm is tight on grids! 

NDP-Grid

•𝑂(𝑛1/4) −approx. for NDP-Grid [Chuzhoy, Kim ‘15]

•𝑛Ω 1/(log log 𝑛)^2 hardness [Chuzhoy, Kim, N. ‘18]

Our Result

2 ෨𝑂 log 𝑛 -approximation algorithm for
NDP-Grid if sources appear on the boundary

Our Result

2 ෨𝑂 log 𝑛 -approximation algorithm for
NDP-Grid if sources appear on the boundary

𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for
NDP-Grid if sources are at distance ≤ 𝛿

from the boundary

“Complementary” Results

Grid with sources
on boundary

2Ω log0.99 𝑛 −hard

Grid with sources
far from boundary

[Chuzhoy, Kim, N. ‘18]This Result

2O log 𝑛 −approximation

“Complementary” Results

2Ω log 𝑛 −hard 2O log 𝑛 −approximation

Grid with holes
Grid with sources

on boundary

2Ω log0.99 𝑛 −hard

Grid with sources
far from boundary

[Chuzhoy, Kim, N. ‘17] [Chuzhoy, Kim, N. ‘18]This Result

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

𝑂𝑃𝑇𝐿𝑃 ≥ 𝑂𝑃𝑇

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

[Kolliopoulos, Stein ‘98] Approx. Algorithm
While there is a path with 𝑓𝑙𝑜𝑤 𝑃 > 0:
• Add such shortest path 𝑃 to the solution
• Delete vertices of 𝑃 from the graph

Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

𝑂𝑃𝑇𝐿𝑃 ≥ 𝑂𝑃𝑇

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

[Kolliopoulos, Stein ‘98] Approx. Algorithm
While there is a path with 𝑓𝑙𝑜𝑤 𝑃 > 0:
• Add such shortest path 𝑃 to the solution
• Delete vertices of 𝑃 from the graph

𝑛-approximation algorithm!Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

𝑂𝑃𝑇𝐿𝑃 ≥ 𝑂𝑃𝑇 𝑂𝑃𝑇𝐿𝑃 ≤ 𝑛 ⋅ 𝑂𝑃𝑇

Multicommodity Flow Relaxation

•A natural way to solve NDP

•Relax “integrality of flow
paths” requirement

[Kolliopoulos, Stein ‘98] Approx. Algorithm
While there is a path with 𝑓𝑙𝑜𝑤 𝑃 > 0:
• Add such shortest path 𝑃 to the solution
• Delete vertices of 𝑃 from the graph

Max. σ𝑖 𝑓𝑙𝑜𝑤(𝑠𝑖 → 𝑡𝑖)

∀𝑖, 𝑓𝑙𝑜𝑤 𝑠𝑖 → 𝑡𝑖 ≤ 1
∀𝑣, 𝑓𝑙𝑜𝑤𝑣 ≤ 1

On grid with sources and destinations on boundary, integrality gap is Ω 𝑛 

𝑂𝑃𝑇𝐿𝑃 ≥ 𝑂𝑃𝑇

𝑛-approximation algorithm!

𝑂𝑃𝑇𝐿𝑃 ≤ 𝑛 ⋅ 𝑂𝑃𝑇

Multicommodity Flows: Is That It?

•On grid with sources and destinations close to boundary,
integrality gap is Ω 𝑛 

• But DP works in this regime ☺

•𝑂(𝑛1/4)-approx for NDP-Grid [Chuzhoy, Kim ‘15]

Multicommodity Flows: Is That It?

•On grid with sources and destinations close to boundary,
integrality gap is Ω 𝑛 

• But DP works in this regime ☺

•𝑂(𝑛1/4)-approx for NDP-Grid [Chuzhoy, Kim ‘15]

•Even when sources and destinations are far boundary,
integrality gap remains Ω 𝑛1/8  [Chuzhoy, Kim ‘15]

Beyond Multicommodity Flows

1. Write a LP to select a good set of demand pairs

2. Use a separate combinatorial algorithm for routing

Beyond Multicommodity Flows

1. Write a LP to select a good set of demand pairs

2. Use a separate combinatorial algorithm for routing

Beyond Multicommodity Flows

1. Write a LP to select a good set of demand pairs

2. Use a separate combinatorial algorithm for routing

Assume for simplicity:
• All sources and destinations are distinct

• All sources lie on top boundary

• All destinations lie on a single row at
distance ≫ 𝑂𝑃𝑇 from grid boundaries

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑡1 𝑡2𝑡3 𝑡4 𝑡5

𝑛

𝑛

Routing

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

≫ 𝑥

𝑛

𝑛

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛
• To route 𝑛1/4 demand pairs, need

≈ 𝑛1/4 spacing
• Can’t route more than 𝑛1/4

demand pairs
• But 𝑂𝑃𝑇 can be ≈ 𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Looks very inefficient…

Routing

≫ 𝑥

Snake-like Routing

Used in [Chuzhoy, Kim ‘15]

and [Cutler, Shiloach ‘78]

𝑛

𝑛

Looks very inefficient…

Use Recursive Partitioning!

• To route 𝑛1/4 demand pairs, need
≈ 𝑛1/4 spacing

• Can’t route more than 𝑛1/4

demand pairs
• But 𝑂𝑃𝑇 can be ≈ 𝑛

Assume we have:
• 𝑥 demand pairs

• Their destinations are at ≫ 𝑥 distance away from each other

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

Recursive Partitioning

𝑥/𝜂

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

Recursive Partitioning

≫ 𝑥/𝜂

𝑥/𝜂

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

Recursive Partitioning

Don’t really need all the destinations to be that far from
each other

Defn: A set of 𝑥 demand pairs and its coloring by 𝜂 colors:

◦ 𝑥/𝜂 demand pairs of each color

◦ All destinations are at distance
≫ 𝑥/𝜂 from each other

◦ Single source-interval for each color

◦ Destination-intervals are at
distance ≫ 𝑥 from each other

≫ 𝑥

Recursive Partitioning

Routing in two parts
• “Global Routing”

• “Local Routing”

Theorem: Recursive Partitioning Property holds for
𝑥 demand pairs ⇒ can route all 𝑥 demand pairs

Part 1 | Global Routing

Part 1 | Global Routing

≫ 𝑥

Part 1 | Global Routing

𝑥/𝜂 blue paths

Enough space to “merge” all paths

≫ 𝑥

Part 1 | Global Routing

Enough space to “merge” all paths

𝑥/𝜂 blue paths

≫ 𝑥

Part 1 | Global Routing

Enough space to “merge” all paths

𝑥/𝜂 blue paths

≫ 𝑥

Part 1 | Global Routing

Enough space to “merge” all paths

𝑥/𝜂 blue paths

≫ 𝑥

Part 1 | Global Routing

Enough space to “merge” all paths

𝑥/𝜂 blue paths

≫ 𝑥

Part 2 | Local Routing

Part 2 | Local Routing

Part 2 | Local Routing

𝑥/𝜂 red paths

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Part 2 | Local Routing

≫ 𝑥/𝜂

𝑥/𝜂 red paths

Snake-like routing
that we saw earlier!

Recursive Partitioning

Recursive Partitioning

To optimize our approximation ratio, we set 𝜂 = 2 log 𝑛 and
extend this approach to log 𝑛 levels

Recursive Partitioning

…

…

To optimize our approximation ratio, we set 𝜂 = 2 log 𝑛 and
extend this approach to log 𝑛 levels

Recursive Partitioning

Recursive Partitioning = “hierarchical set of intervals” and
“hierarchical assignment” of colors

…

…

Recursive Partitioning

Recursive Partitioning = “hierarchical set of intervals” and
“hierarchical assignment” of colors

…

…

Nested intervals on source-row
and nested intervals on

destination-row

Recursive Partitioning

Recursive Partitioning = “hierarchical set of intervals” and
“hierarchical assignment” of colors

…

…

Each interval on destination-row
is hierarchically mapped to a

unique interval on source-row

Nested intervals on source-row
and nested intervals on

destination-row

Recursive Partitioning | Why?

Theorem: 𝑂𝑃𝑇𝑅𝑃 ≥ 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛

Largest subset of demand
pairs with Recursive
Partitioning Property

Value of the optimum
NDP-Grid solution

Recursive Partitioning | How?

Theorem: Can efficiently find a set of 𝑂𝑃𝑇𝑅𝑃/2
𝑂 log 𝑛

demand pairs with Recursive Partitioning Property

Recursive Partitioning | How?

Theorem: Can efficiently find a set of 𝑂𝑃𝑇𝑅𝑃/2
𝑂 log 𝑛

demand pairs with Recursive Partitioning Property

Idea:
• Find a small collection of candidate

hierarchical sets of intervals such that one of
them has this property

• Solve for each candidate separately
• Return the best solution

Recursive Partitioning | How?

Theorem: Can efficiently find a set of 𝑂𝑃𝑇𝑅𝑃/2
𝑂 log 𝑛

demand pairs with Recursive Partitioning Property

Idea:
• Find a small collection of candidate

hierarchical sets of intervals such that one of
them has this property

• Solve for each candidate separately
• Return the best solution

Write LP and perform
randomized rounding

level by level

Final Algorithm

•Find a set of 𝑂𝑃𝑇𝑅𝑃/ 2
𝑂 log 𝑛 demand pairs with

Recursive Partitioning Property

•Route all of them!

Final Algorithm

•Find a set of 𝑂𝑃𝑇𝑅𝑃/ 2
𝑂 log 𝑛 demand pairs with

Recursive Partitioning Property

•Route all of them!

Recall: 𝑂𝑃𝑇𝑅𝑃 ≥ 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛

We route 𝑂𝑃𝑇/2 ෨𝑂 log 𝑛 demand pairs

Conclusion

•2 ෨𝑂 log 𝑛 -approximation algorithm for NDP-Grids if
sources appear on the boundary

•𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for NDP- Grids
if sources are at distance ≤ 𝛿 from the boundary

•Only APX-hardness is known for NDP-Grid with
sources on the boundary
Better hardness results for this case?

•Congestion minimization?
• Route everything, but minimize load
• 𝑂(log 𝑛 / log log 𝑛)-approx
•Ω log log 𝑛 -hardness

Conclusion

•2 ෨𝑂 log 𝑛 -approximation algorithm for NDP-Grids if
sources appear on the boundary

•𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for NDP- Grids
if sources are at distance ≤ 𝛿 from the boundary

•Only APX-hardness is known for NDP-Grid with
sources on the boundary
Better hardness results for this case?

•Congestion minimization?
• Route everything, but minimize load
• 𝑂(log 𝑛 / log log 𝑛)-approx
•Ω log log 𝑛 -hardness

Conclusion

•2 ෨𝑂 log 𝑛 -approximation algorithm for NDP-Grids if
sources appear on the boundary

•𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for NDP- Grids
if sources are at distance ≤ 𝛿 from the boundary

•Only APX-hardness is known for NDP-Grid with
sources on the boundary
Better hardness results for this case?

•Congestion minimization?
• Route everything, but minimize load
• 𝑂(log 𝑛 / log log 𝑛)-approx
•Ω log log 𝑛 -hardness

Conclusion

•2 ෨𝑂 log 𝑛 -approximation algorithm for NDP-Grids if
sources appear on the boundary

•𝛿 ⋅ 2 ෨𝑂 log 𝑛 -approximation algorithm for NDP- Grids
if sources are at distance ≤ 𝛿 from the boundary

•Only APX-hardness is known for NDP-Grid with
sources on the boundary
Better hardness results for this case?

•Congestion minimization?
• Route everything, but minimize load
• 𝑂(log 𝑛 / log log 𝑛)-approx
•Ω log log 𝑛 -hardness Thank You!

