Improved Approximation for Node-Disjoint Paths in Grids with Sources on the Boundary

JULIA CHUZHOY

DAVID KIM

RACHIT NIMAVAT

ICALP, 2018

Input: Undirected graph and demand pairs $(s_1, t_1), ..., (s_k, t_k)$

Input: Undirected graph and demand pairs $(s_1, t_1), ..., (s_k, t_k)$

Input: Undirected graph and demand pairs $(s_1, t_1), ..., (s_k, t_k)$

Sources

Destinations

Input: Undirected graph and demand pairs $(s_1, t_1), ..., (s_k, t_k)$

via node-disjoint paths

OPT: 2

•Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90]

- •Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90]
 - FPT algorithm: $f(k) \cdot n^2$ [Robertson, Seymour '90 \rightarrow Kawarbayashi, Kobayashi, Reed '12]

 $2^{2^{2^{2}}}$

- •Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90]
- k part of input \Rightarrow NP-Hard [Karp '72]

- •Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90]
- k part of input \Rightarrow NP-Hard [Karp '72]

- • $O(\sqrt{n})$ —approx. [Kolliopoulos, Stein '98]
- •Roughly $\Omega\left(\sqrt{\log n}\right)$ —hardness of approx. [Andrews, Zhang '05], [Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

- •Constant $k \Rightarrow$ Efficient algorithm [Robertson, Seymour '90]
- k part of input \Rightarrow NP-Hard [Karp '72]

- • $O(\sqrt{n})$ —approx. [Kolliopoulos, Stein '98]
- •Roughly $\Omega\left(\sqrt{\log n}\right)$ —hardness of approx. [Andrews, Zhang '05], [Andrews, Chuzhoy, Guruswami, Khanna, Talwar, Zhang '10]

- •What about simpler cases?
 - Analysis of $O(\sqrt{n})$ -approx. algorithm is tight on grids! \mathfrak{S}

NDP-Grid

- • $O(n^{1/4})$ —approx. for NDP-Grid [Chuzhoy, Kim '15]
- • $n^{\Omega(1/(\log\log n)^2)}$ hardness [Chuzhoy, Kim, N. '18]

Our Result

 $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grid if sources appear on the boundary

Our Result

 $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grid if sources appear on the boundary

 $\delta \cdot 2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grid if sources are at distance $\leq \delta$ from the boundary

"Complementary" Results

 $2^{O(\sqrt{\log n})}$ —approximation

Grid with sources on boundary

This Result

 $2^{\Omega(\log^{0.99} n)}$ —hard

Grid with sources far from boundary

[Chuzhoy, Kim, N. '18]

"Complementary" Results

Grid with holes

[Chuzhoy, Kim, N. '17]

Grid with sources on boundary

This Result

 $2^{\Omega(\log^{0.99} n)}$ -hard

Grid with sources far from boundary

[Chuzhoy, Kim, N. '18]

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

```
\begin{aligned} &\text{Max.} \ \sum_{i} flow(s_i \to t_i) \\ &\forall i, \quad flow(s_i \to t_i) \leq 1 \\ &\forall v, \quad flow_v \leq 1 \end{aligned}
```

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

```
\begin{aligned} &\text{Max.} \ \sum_{i} flow(s_{i} \rightarrow t_{i}) \\ &\forall i, \quad flow(s_{i} \rightarrow t_{i}) \leq 1 \\ &\forall v, \quad flow_{v} \leq 1 \end{aligned}
```

$$OPT_{LP} \ge OPT$$

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

```
\mathsf{Max.} \sum_i flow(s_i \to t_i)
```

$$\forall i, flow(s_i \rightarrow t_i) \leq 1$$

 $\forall v, flow_v \leq 1$

 $OPT_{LP} \ge OPT$

[Kolliopoulos, Stein '98] Approx. Algorithm While there is a path with flow(P) > 0:

- Add such shortest path P to the solution
- Delete vertices of P from the graph

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

Max. $\sum_{i} flow(s_i \rightarrow t_i)$

 $\forall i, flow(s_i \rightarrow t_i) \leq 1$ $\forall v, flow_v \leq 1$ [Kolliopoulos, Stein '98] Approx. Algorithm While there is a path with flow(P) > 0:

- Add such shortest path P to the solution
- Delete vertices of P from the graph

 \sqrt{n} -approximation algorithm!

$$OPT_{LP} \ge OPT$$

$$OPT_{LP} \le \sqrt{n} \cdot OPT$$

- A natural way to solve NDP
- •Relax "integrality of flow paths" requirement

Max. $\sum_{i} flow(s_i \rightarrow t_i)$

 $\forall i, flow(s_i \rightarrow t_i) \leq 1$ $\forall v, flow_v \leq 1$

 $OPT_{LP} \ge OPT$

 \sqrt{n} -approximation algorithm!

[Kolliopoulos, Stein '98] Approx. Algorithm While there is a path with flow(P) > 0:

- Add such shortest path P to the solution
- Delete vertices of P from the graph

 $OPT_{LP} \le \sqrt{n} \cdot OPT$

On grid with sources and destinations on boundary, integrality gap is $\Omega(\sqrt{n})$ $oldsymbol{\otimes}$

Multicommodity Flows: Is That It?

- •On grid with sources and destinations close to boundary, integrality gap is $\Omega(\sqrt{n})$ ${\mathfrak S}$
 - But DP works in this regime ©
 - $O(n^{1/4})$ -approx for NDP-Grid [Chuzhoy, Kim '15]

Multicommodity Flows: Is That It?

- •On grid with sources and destinations close to boundary, integrality gap is $\Omega(\sqrt{n})$ ${\mathfrak S}$
 - But DP works in this regime ©
 - $O(n^{1/4})$ -approx for NDP-Grid [Chuzhoy, Kim '15]
- •Even when sources and destinations are far boundary, integrality gap remains $\Omega(n^{1/8})$ igorims [Chuzhoy, Kim '15]

Beyond Multicommodity Flows

- 1. Write a LP to *select* a *good* set of demand pairs
- 2. Use a separate combinatorial algorithm for routing

Beyond Multicommodity Flows

- 1. Write a LP to *select* a *good* set of demand pairs
- 2. Use a separate combinatorial algorithm for routing

Beyond Multicommodity Flows

- 1. Write a LP to *select* a *good* set of demand pairs
- 2. Use a separate combinatorial algorithm for routing

Assume for simplicity:

- All sources and destinations are distinct
- All sources lie on top boundary
- All destinations lie on a *single row* at distance $\gg OPT$ from grid boundaries

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other

Snake-like Routing

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other

Snake-like Routing

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other

Snake-like Routing

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other

Snake-like Routing

Assume we have:

- *x* demand pairs
- Their destinations are at $\gg x$ distance away from each other
- To route $n^{1/4}$ demand pairs, need $\approx n^{1/4}$ spacing
- Can't route more than $n^{1/4}$ demand pairs
- But OPT can be $\approx \sqrt{n}$

Looks very inefficient...

Assume we have:

- x demand pairs
- Their destinations are at $\gg x$ distance away from each other
- To route $n^{1/4}$ demand pairs, need $\approx n^{1/4}$ spacing
- Can't route more than $n^{1/4}$ demand pairs
- But OPT can be $\approx \sqrt{n}$

Looks very inefficient...

Recursive Partitioning

Don't really need *all* the destinations to be that far from each other

Recursive Partitioning

Don't really need *all* the destinations to be that far from each other

Defⁿ: A set of x demand pairs and its coloring by η colors:

Recursive Partitioning

Don't really need *all* the destinations to be that far from each other

Defⁿ: A set of x demand pairs and its coloring by η colors:

 $^{\circ} x/\eta$ demand pairs of each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color

Don't really need *all* the destinations to be that far from each other

- x/η demand pairs of each color
- All destinations are at distance $\gg x/\eta$ from each other
- Single source-interval for each color
- Destination-intervals are at distance $\gg x$ from each other

Theorem: Recursive Partitioning Property holds for x demand pairs \Rightarrow can route all x demand pairs

Routing in two parts

- "Global Routing"
- "Local Routing"

To optimize our approximation ratio, we set $\eta=2^{\sqrt{\log n}}$ and extend this approach to $\sqrt{\log n}$ levels

To optimize our approximation ratio, we set $\eta=2^{\sqrt{\log n}}$ and extend this approach to $\sqrt{\log n}$ levels

Recursive Partitioning = "hierarchical set of intervals" and "hierarchical assignment" of colors

Recursive Partitioning = "hierarchical set of intervals" and

"hierarchical assignment" of colors

Nested intervals on source-row and nested intervals on destination-row

Recursive Partitioning = "hierarchical set of intervals" and

"hierarchical assignment" of colors

Each interval on destination-row is hierarchically mapped to a unique interval on source-row

Nested intervals on source-row and nested intervals on destination-row

Recursive Partitioning | Why?

Theorem: $OPT_{RP} \ge OPT/2^{\tilde{O}(\sqrt{\log n})}$

Largest subset of demand pairs with Recursive Partitioning Property

Value of the optimum NDP-Grid solution

Recursive Partitioning | How?

Theorem: Can efficiently find a set of $OPT_{RP}/2^{O(\sqrt{\log n})}$ demand pairs with Recursive Partitioning Property

Recursive Partitioning | How?

Theorem: Can efficiently find a set of $OPT_{RP}/2^{O(\sqrt{\log n})}$ demand pairs with Recursive Partitioning Property

Idea:

- Find a small collection of candidate hierarchical sets of intervals such that one of them has this property
- Solve for each candidate separately
- Return the best solution

Recursive Partitioning | How?

Theorem: Can efficiently find a set of $OPT_{RP}/2^{O(\sqrt{\log n})}$ demand pairs with Recursive Partitioning Property

Write LP and perform randomized rounding level by level

Idea:

- Find a small collection of candidate
 hierarchical sets of intervals such that one of
 them has this property
 Solve for each candidate separately
- Return the best solution

Final Algorithm

- •Find a set of $OPT_{RP}/2^{O(\sqrt{\log n})}$ demand pairs with Recursive Partitioning Property
- •Route all of them!

Final Algorithm

- •Find a set of $OPT_{RP}/2^{O(\sqrt{\log n})}$ demand pairs with Recursive Partitioning Property
- •Route all of them!

Recall: $OPT_{RP} \ge OPT/2^{\tilde{O}(\sqrt{\log n})}$

We route $OPT/2^{\tilde{O}(\sqrt{\log n})}$ demand pairs

• $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grids if sources appear on the boundary

- • $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grids if sources appear on the boundary
- • $\delta \cdot 2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP- Grids if sources are at distance $\leq \delta$ from the boundary

- • $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grids if sources appear on the boundary
- • $\delta \cdot 2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP- Grids if sources are at distance $\leq \delta$ from the boundary
- •Only APX-hardness is known for NDP-Grid with sources on the boundary

 Better hardness results for this case?
- •Congestion minimization?
 - Route everything, but minimize load
 - $O(\log n / \log \log n)$ -approx
 - $\Omega(\log \log n)$ -hardness

- • $2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP-Grids if sources appear on the boundary
- • $\delta \cdot 2^{\tilde{O}(\sqrt{\log n})}$ -approximation algorithm for NDP- Grids if sources are at distance $\leq \delta$ from the boundary
- Only APX-hardness is known for NDP-Grid with sources on the boundary
 Better hardness results for this case?
- •Congestion minimization?
 - Route everything, but minimize load
 - $O(\log n / \log \log n)$ -approx
 - $\Omega(\log \log n)$ -hardness

Thank You!